
@Copyright Royal Cyber, LLC Page 1

“T e c h n i c a l C o n t e n t F o r A R a t i o n a l W o r l d”

In this issue:

• COBOL Standards Checking with RDz Code Review - Chris Leland

• RAA Search Patterns – Ravikanth Chavali

• Royal Cyber in the News

RC
• R o y a l C y b e r

&
• D e v e l o p m e n t M o d e r n i z a t i o n

You
• N e w s l e t t e r

http://www.royalcyber.com/wp-content/uploads/2014/You-RDz-and-Royal-Cyber-v4.pdf
http://www.royalcyber.com/wp-content/uploads/2014/You-RDz-and-Royal-Cyber-v4.pdf
http://www.royalcyber.com/wp-content/uploads/2014/You-RDz-and-Royal-Cyber-v4.pdf
http://www.royalcyber.com/wp-content/uploads/2014/You-RDz-and-Royal-Cyber-v4.pdf

@Copyright Royal Cyber, LLC Page 2

COBOL Standards Checking – RDz‘s ―Code Review‖

Feature – Part I

This article is the first in a two-part series that explores the use of RDz’s “Software Analyzer” for analyzing

COBOL** Performance and Maintainability.

By Chris Leland, Royal Cyber

uestion…what are the four things you do to COBOL programs as you move them through the lifecycle?

1. Code. 2. Compile for syntax. 3. Test. And 4. Promote into production. Right? Yes…

Wait … Wasn‘t there a 5th thing? … Something about ―desk-checking‖, or ―standards reviewing‖,

or some such step? Why sure there is… Well …. maybe there is… To be honest? We think there is –

but maybe it‘s not painstakingly enforced… Come to think of it? What do we do around here

when it comes to determining if code‘s been written that is; a. efficient, and b. maintainable?

If that mental conundrum hits home, then you‘re in the same boat with about 85% of z/OS shops out there. Who

know that they should do some sort of standards-analysis or evaluation of the code that becomes an asset on the

corporate balance sheet before it‘s thrown over the wall into production. But who don‘t have the time, or don‘t

have the wherewithall to work this critical step into the lifecycle.

Fret not… help is on the way in the form of RDz‘s Code Review (Software Analyzer) product feature. But before we

get into the details, let‘s have a look at exactly what doing this sort of thing can mean to your company.

Why do COBOL Code Reviews for Run-Time Performance?

Over the years IBM has been publishing COBOL efficiency coding Redbooks, Powerpoint presentations and Tech-

Notes. In fact, a few years ago they published a white paper title: IBM Enterprise COBOL Version 4 Release 2

Performance Tuning, written by Rick (R.J.) Arellanes. http://www-01.ibm.com/support/docview.wss?uid=swg27018287&aid=1

Besides being one of the world‘s foremost experts on COBOL efficiency, Rick took the time to setup a clean room

environment and benchmark potential savings from using different COBOL Compiler, LE and z/OS tuning and

COBOL programming options. And then he documented the results in a well-written white paper that I strongly

recommend you grab – if you‘re looking to save Production MIPS. ―Production MIPS?‖ you ask… Yes.

You see – z/OS costs are typically divided into MIPS used for the development of your applications – and for the

production running your applications to transact business. In almost all cases production MIPS are by far the larger

percentage of data center costs. Typically something like 70/30 (production/development) or 65/35, etc. So,

while it‘s nice to chase down development MIPS cost savings, saving Production MIPS is where the biggest bang

for your buck lives. So, ensuring that you‘re abiding by the strategies and suggestions in Rick‘s white paper is key.

We‘ve screen captured a few of the more eye-popping returns on your investment in Figures 1 through 8 below.

Have a look at these before continuing on with this article. Please note that we‘ve added the red rectangular

boxes for emphasis – they‘re not in Rick‘s whitepaper. Also, at the risk of redundancy, please consider reading

Rick‘s white paper. Because this article is not specific to COBOL efficiency, we‘ve left out virtuall all of the detail in

Rick‘s doc. Which shows that, when it comes to production efficiencies, there are better/worse ways to develop

an application. And that the cost savings for ―better‖ are not insignificant.

** RDz’s Code Review supports PL/I and Java, in addition to COBOL

Q

http://www-01.ibm.com/support/docview.wss?uid=swg27018287&aid=1

@Copyright Royal Cyber, LLC Page 3

Statistics on how performance-oriented COBOL coding can save MIPS

Figure 1. Performance Benefits of Coding BLOCK CONTAINS 0

Figure 2. Performance considerations for CICS LINK vs. COBOL dynamic CALL

Figure 3. Performance considerations for different VSAM file access methods

Figure 4. Performance considerations for COMP (binary) data declaration

@Copyright Royal Cyber, LLC Page 4

Figure 5. Performance considerations for DISPLAY and COMP-3 vs. COMP declarations

Figure 6. Performance considerations for table subscripting

@Copyright Royal Cyber, LLC Page 5

Figure 7. Performance considerations for iterative structures (PEFORM VARYING…)

Figure 8. Performance considerations for sequential vs. binary search (SEARCH vs. SEARCH ALL)

Code Review Tools

So, I‘m betting that Rick‘s numbers have gotten your attention (didn‘t expect quite that level of disparity between

coding options, eh?) If you‘re convinced now of the potential savings for coding COBOL with an eye towards

efficiency, the next question to be answered is, ―how‖ – how are you going to find violations of coding constructs

that – when recast more efficiently can save you production MIPS …lots of production MIPS.

But that‘s not where the savings end. Code Review for program ―maintain-ability‖ through readable operational

code, quality inline documentation, well-named procedures/paragraphs and variables can save programming

costs, maintenance costs, and production support costs. There‘s a lot of upside to Code Review, keep reading.

Manual Code Review

Back in the day ―Desk-Checking‖ methods were used – where project teams examined programs manually. But

over the years Desk-Checking has fallen out of favor, due to the high capital costs of teams reading code and the

requirement to utilize (―tie up‖) your very best / most experienced COBOL experts in this demanding process.

Enter Code Review tools.

Code Review tools parse and inspect program source – and return some type of reporting on the quality of the

statements. Benefits of using Code Review tooling include:

 Lowered developer resource costs

 Accuracy - more issues found - it‘s easy to miss things in source – as we all can attest

 Can schedule scans to be run in batch – for certain tools

 And can enforce issues to be resolved – when scans are run in batch (this is tool-dependent)

 Can configure scanning options to include/exclude certain rules

 Can scan source code Deltas-only - in other words, you ―baseline‖ the code, and run the scan only

against new versions of the program

Besides Performance Code Review, most tools offer code inspection on the level of ―maintainability‖ or

structured coding standards; no ALTER statements, GO TO statements only pointing to paragraph exits, etc.

And finally, when using RDz – Code Review functionality provides convenience – as you can finish doing your

work and fire off a scan at any time from a context menu.

@Copyright Royal Cyber, LLC Page 6

The downside to using automated tooling for Code Review includes – but is not limited to the following:

 An abundance of “False Positives.” Where the tool catches what it considers a code violation when in fact

– within the application/business context - what is coded could be the best (or only) solution

 Missed code violations. The rule violation reports produced are only as good as the software doing the

parsing. And COBOL is a complex language. Little things such as splitting statements over multiple lines

can sometimes fool products.

 Attenuation of expertise. When you turn COBOL efficiency coding standards over to a software package,

programmers become dependent on that package – and might never bother to pick up efficiency-

coding-insight and skills. After some period of time, who‘s minding the store? Oh yeah… Rick Arellanes

 Loss of accuracy over time. Or your tools do not keep up with the latest COBOL Compiler ―best practices‖.

Back in the mid-1980‘s the DB2 Optimizer was growing up fast. And with each release some percentage of

SQL efficiency coding rules-of-thumb became obsolete. So SQL coding practices that might have saved

money at DB2 version 1.7 actually cost more money @ DB2 version 2.1. Etc.

But in spite of the above, most shops are looking to utilize automated Code Review tool to manage the process of

standards checking – for all the benefits cited earlier. Enter RDz‘s Code Review feature: Software Analyzer.

RDz’s Code Review/Software Analyzer

At release 8.0.3 (circa 2011) IBM GA‘d a function off of the RDz Context Menu named: ―Software Analyzer‖ –

essentially a euphemism for “this is RDz’s code review functionality”. The feature was lifted from long-standing

Java/eclipse static code analysis available in IBM/RAD since the 1950‘s. Okay – not quite that long – but it‘s been

around long enough for there to be ~211 Java Code Review rules in the box. By the way this kind of code-reuse

larceny is fairly common in Java development software @IBM – and why not? As long as it benefits you.

The first Software Analyzer release was COBOL-only (COBOL plus Java). And it was a little thin on both

functionality/flexibility (not many use cases) and Code Review depth (not many rules in the initial release). In

v8.0.3 you could run Code Review on individual COBOL programs open from either Local Workstation projects or

from z/OS through Remote Systems or in the CARMA view. And you could also drag an entire PDS to a Local

Workstation and run Code Review against all of the COBOL programs in the PDS as one/single action.

Right out of the gate several things were apparent about the initial release‘s functionality:

 Because IBM borrowed from mature Java technology, the design and implementation worked (well)

 The U.I. was extremely easy to use/interpret results/interact with

 The implementation of Code Review process was simple

 But there was no way to implement custom Code Review rules in the initial release

 Everything was executed (interactively) on the client

o Good - in that this saved mainframe MIPS and made the function easy to use

o Bad - in that the Code Review process is best centralized – not federated out

 And support for running Code Review against program source Deltas was not available

Over the course of the next few years IBM kept improving Code Review. So that today (@v9.0.1.2) the following is

the state of things:

 Code Review is still easy for developers to use

 There are now ~55 out of the box rules (see Table 1)

 You now can code your own custom COBOL Code Review rules

 PL/I is supported

 You can now execute Code Review interactively (on the client) or through batch JCL – on z/OS

So all-in-all, what began as positive add-on to RDz for a very good cause (recall Figures 1 – 8) is now extremely

robust and in our view, world class – with only one or two missing options which we‘ll get to later in this article.

@Copyright Royal Cyber, LLC Page 7

RDz’s Code Review Concepts/Taxonomy

RDz‘s Code Review functionality consists of Analysis Configuration, individual Code Review Rules and Rulesets.

Rulesets are simply named organizers for a collection of related individual Code Review rules. They‘re basically like

Windows folders used to organize and manage individual files on your hard-drive. For example, a Ruleset named:

Performance Rules – could have several Code Review rules to scan your programs for run-time efficiency problems

such as those in Figures 1 8. COBOL v5 Compatibility Rules could be run to test for COBOL statements that are

either deprecated in COBOL version 5 or will not compile. You can create any number of custom Rulesets if it

helps you to understand and use them effectively in your SDLC.

An Analysis Configuration is a named collection of Rulesets that you select to run against your code. You can

have one or you can have many Analysis Configurations. As with Rulesets, you can name your Analysis

Configurations whatever you like in order to make their use understandable and straightforward. Some examples

we‘ve seen for organizing Analysis Configurations are; By SDLC cycle: (Development, Q.A., Prod, etc.), or – by

business division (Group Claims, Medicare, Property Casualty, etc.). The relationship among Analysis

Configurations, Rulesets and individual Code Review rules is shown in Figure 9. This taxonomy provides an

extremely flexible means of organizing your Code Review work.

Figure 9. Relationship among RDz code Review artifacts

Creating Your First Code Review Rules

You begin by defining an Analysis Configuration. This is done from the Context Menu within edit on a program - or

from the Run menu on the toolbar, under Analysis. Let‘s assume you‘re in the Editor:

From edit, select: Software Analyzer > Software Analyzer Configurations…

You will be presented with the New launch configuration wizard. From this wizard you select Software Analyzer

and click the: New launch configuration button.

Analysis
Configurations

•Contain
1 to
many...

Rulesets
•Contain
one to
many...

Individual Code
Review Rules

http://en.wikipedia.org/wiki/Deprecation

@Copyright Royal Cyber, LLC Page 8

This opens an area for you to name your Analysis Configuration (I‘ve named

mine Development) and select rules from the COBOL Code Review Analysis

Domains and Rules – which are divided into four Rulesets (categories):

1. Enterprise COBOL – these two rules catch any statements in your code that are incompatible with Enterprise COBOL v5

2. Naming Conventions – there‘s a single rule in this Ruleset that will catch any COBOL file where the PROGRAM-ID does not

match the PDS member name

3. Performance – there are 9 rules under the Performance Ruleset

4. Program Structures – and there are 33 rules in the Program Structures Ruleset… which evaluate the maintainability of your

COBOL code

To select a rule for inclusion in my ―Development‖ Analysis Configuration I‘ve expanded the Ruleset twisties (little

downward triangles), and checked the box next to the rule. If you‘re unsure of the meaning of a given Rule

mouse-over the Rule (see Figure 10 below). Speaking of (what these rules mean)? When you fire off a Software

Analysis RDz invokes the selected Rules/Rulesets. Any statement in your COBOL program that violates a rule will

get flagged when you run the Analysis Configure (see Figure 11).

.

Figure 10. Out-of-the-Box COBOL Code Review Rules

After you‘ve selected the rules you want to run against your code:

Click Close, and at ―Save changes?‖ click: Yes.

@Copyright Royal Cyber, LLC Page 9

Running the Code Review Rules

When you‘ve saved your changes and are ready to run (again - assuming that you‘re in Edit) select:

Software Analyzer > Development (or the name of your Configuration)

This will invoke Code Review on your program. Code Review analyzes your program and flags any statement that

violates one or more of the rules you‘ve selected with a Code Review annotation (see Figure 11).

Figure 11. Rule Violation annotations – and hyperlinks from a Code Review view

After it completes Code Review, RDz aggregates all of the rule violations for you, and presents them in a Code

Review view (Figure 11).

The code Review View organizes rule violations in your program by: Ruleset Rule Individual statement rule

violations – which are hyperlinked back into the source file for quick access/analysis and statement modification

(i.e. no need to do find/change commands) – just click the link to the statement in the Code Review view.

In this workflow model, you would fix (or choose not to fix) specific violations in the program, save the code, and

then re-run the Code Review Analysis Configuration – iterating over the process until you‘re satisfied with the state

 Code Review Annotation

Code Review View

@Copyright Royal Cyber, LLC Page 10

of your code (or until you run out of time in your project). Note that you can also save the Code Review itself to

hardcopy – either HTML or (as shown in Figure 12) a PDF.

Figure 12. Rule Violation annotations – saved to a PDF

If at any point in the Code Review workflow process you have no use for a particular Analysis you can delete by

selecting it in the Code Review View and clicking a red ―delete‖ button. This deletes the Analysis and removes the

Annotations from the program.

About These out-of-the-box Code Review Rules … aren’t some of them contradictory?

Take a close look at the ~55 out-of-the-box COBOL Code Review Rules (see Table 1). A cursory inspection shows

that there are the following:

 Some very good rules

 Some not-so-good rules

 Some contradictory rules

How did this happen?

We were curious ourselves, but in listening to the RDz Product Managers discuss their approach to delivering the

Rulesets they said that, in essence – companies wrote in requirements for certain rules and the RDz team created

@Copyright Royal Cyber, LLC Page 11

the rules – basically as stated… whether or not the rules would be acceptable to the Rick Arellaneses of the world.

So it becomes incumbent on you to sift through the rules, find the ones that you agree with, check the boxes for

the rules, save, test, test, and test some more, and then rollout your Code Review implementation. How does one

do that (you ask)? Good question.

Rolling out and Administering Code Review Rules

The Software Configuration wizard has an Export… button on it, to save off a an Analysis Configuration to a

Windows file server,

and an Import…

button that

developers can use

to fetch Analysis

Configurations into

their Workspace.

You can also build Code Review rules into a custom or template workspace. And finally, RDz‘s Push-to-Client

functionality – a topic we‘ll cover in a future Royal Cyber Newsletter.

Our Take…

Unless you‘re already taking advantage of a quality automated Code Review product, take a hard look at RDz‘s

Software Analyzer. As you‘ve seen in this Part I article, the functionality is solid – the integration is first-rate and the

out-of-the-box rules are an excellent start.

You will absolutely want to supplement these out-of-the-box rules with implementations of your shop‘s own custom

COBOL Code Review rules, and in Part II of this article we will discuss how to do that, and we‘ll also cover running

Code Review in batch and the parameter-driven Code Review rules available in Preferences > Software Analyzer.

It is worth pointing out that creating custom COBOL Code Review rules is non-trivial. It requires a combination of

Eclipse/Java and advanced COBOL knowledge. This is something that Royal Cyber specializes in. We offer a

formal program for COBOL Custom Code Review Rule creation, where we come on-site, show you how custom

rules are implemented, and create a number of them for you during the process. Here’s a link to our catalog with

. Royal Cyber RDz Services – Q2 2014 a detailed description to this offering

Next steps…

RDz is one of the primary strengths of Royal Cyber. In 2014 IBM chose Royal Cyber to manage its RDz ―Distance

Learning‖ program - out of all the RDz business partners world-wide. We offer deep and quality service

engagements in every phase or RDz – from Installation and Deployment, to Training/Mentoring and adoption, to

administering and supporting both the RDz client and server – and finally, to evaluating your RDz Adoption and

Return-on-Investment.

 For details on the Royal Cyber RDz Rollout and project/task usage modeling contact us: inquires@royalcyber.com

 To sign up for Royal Cyber RDz Free Distance Learning: http://royalcyber.com/royal-cyber-rdz-distance-learning-training-

schedule/

 To get a copy of the January 2014 Newsletter – including additional deep-dive articles on RDz and RAAi:

http://royalcyber.org/mn/index.html

Chris Leland: Chris is Royal Cyber‘s primary RDz technical instructor - having worked full-time with RDz for

almost four years; developing applications in COBOL, teaching RDz classes and mentoring in COBOL and

Assembler, installing and configuring RDz, delivering custom workspace design sessions, writing an RDz evaluation

exam, and integrating RDz with Rational Asset Analyzer. Chris passed the IBM/RDz Certification exam with flying

colors in 2011.

http://pic.dhe.ibm.com/infocenter/ratdevz/v8r5/index.jsp?topic=%2Fcom.ibm.etools.zide.cmn.doc%2Ftopics%2Fczdptc.html
http://www.royalcyber.com/wp-content/uploads/2014/You-RDz-and-Royal-Cyber-v4.pdf
mailto:inquires@royalcyber.com
http://royalcyber.com/royal-cyber-rdz-distance-learning-training-schedule/
http://royalcyber.com/royal-cyber-rdz-distance-learning-training-schedule/
http://royalcyber.org/mn/index.html

@Copyright Royal Cyber, LLC Page 12

Code Review Rule Description…
Avoid ACCEPT statements Use this rule to flag all ACCEPT statements.

Avoid ACCEPT statements
containing FROM CONSOLE or
FROM SYSIN

Use this rule to flag ACCEPT statements that contain the phrase FROM
CONSOLE or FROM SYSIN.

Avoid ALTER statements Use this rule to flag ALTER statements.

Avoid CALL statements with a literal
program name

Use this rule to flag CALL statements that specify the program name as a
literal.

Avoid calling the specified routine Use this template to flag CALL statements that call a specified routine. Enter
the name of the routine as a parameter to this template.

Avoid CANCEL statements Use this rule to flag CANCEL statements.

Avoid COPY SUPPRESS statements Use this rule to flag COPY statements that contain the SUPPRESS phrase.

Avoid CORRESPONDING phrases Use this rule to flag: ADD, SUBTRACT, and MOVE statements that contain a
CORRESPONDING phrase.

Avoid DISPLAY statements
containing UPON CONSOLE

Use this rule to flag DISPLAY statements that contain UPON CONSOLE.

Avoid ENTRY statements Use this rule to flag ENTRY statements.

Avoid EXIT PROGRAM statements Use this rule to flag EXIT PROGRAM statements.

Avoid GO TO statements Use this rule to flag all GO TO statements.

Avoid GO TO statements, except
those that reference an exit paragraph

Use this rule to flag all GO TO statements, except those that transfer control to
an exit paragraph. An exit paragraph is a paragraph containing only an EXIT
statement.

Avoid IF without ELSE Use this rule to flag IF statements that do not contain an ELSE clause.

Avoid including the specified copy
book

Use this template to flag COPY statements that refer to a specified copy book.
Enter the name of the copy book as a parameter to this template.

Avoid INITIALIZE statements. Use
elementary MOVE statements or
VALUE clauses.

Use this rule to flag INITIALIZE statements.

Avoid nesting IF statements deeper
than the specified number of levels

Use this template to flag IF statements that are nested deeper than a specified
number of levels. Enter the number of levels of nesting as a parameter to this
template.

Avoid NEXT SENTENCE phrases Use this rule to flag all NEXT SENTENCE phrases.

Avoid OCCURS DEPENDING ON
phrases

Use this rule to flag OCCURS DEPENDING ON phrases.

Avoid PERFORM, except PERFORM
section

Use this rule to flag all PERFORM statements, except those that contain
sections only.

Avoid RESERVE clauses in FILE-
CONTROL paragraphs

Use this rule to flag RESERVE clauses in FILE-CONTROL paragraphs.

Avoid static calls except for the
specified program name

Use this template to flag CALL statements in which (a) a Java static method or
a COBOL factory method is called, and (b) the method name does not match
the specified program name. Enter the program name as a parameter to the
template.

Avoid STOP RUN and STOP literal
statements

Use this rule to flag STOP RUN and STOP literal statements.

Avoid THRU phrases in PERFORM
statements

Use this rule to flag PERFORM statements that include a THRU phrase.

Avoid using level-88 entries in data
descriptions

Use this rule to flag data descriptions that use level-88 entries. Each level-88
entry is flagged.

Avoid using more than one EXIT
statement per section

Use this rule to flag sections that contain more than one EXIT statement.

Avoid using SECTION in a procedure
division

Use this rule to flag any SECTION declarations in the procedure division.

@Copyright Royal Cyber, LLC Page 13

Avoid using subscripts to access a
table. Use indexes.

Use this rule to flag any data item (a) that is used as a subscript to access a
table element, and (b) that is not specified in an INDEXED BY phrase in the
OCCURS clause that defines the table.

Avoid using the selected compiler
directives

Use this template to flag the selected compiler directives. Select the compiler
directives to flag: BASIS, CBL (PROCESS), COPY, EJECT, REPLACE,
SERVICE LABEL, SERVICE RELOAD, SKIP, and TITLE.

Avoid XML-PARSE statements Use this rule to flag XML-PARSE statements.

EXEC CICS: Check EIBRESP after
NOHANDLE

Use this rule to flag any EXEC CICS statement that specifies the NOHANDLE
option and is not followed by an IF statement or an EVALUATE statement
that checks the value of EIBRESP.

EXEC CICS: Use DFHRESP to check
the return value

This rule applies to data items that are used as the RESP or RESP2 parameter
of an EXEC CICS command.

EXEC CICS: Use the RESP option Use this rule to flag CICS EXEC commands that do not include the RESP
option.

EXEC SQL: Check SQLCODE Use this rule to flag any EXEC SQL statement that is not followed by an IF
statement or an EVALUATE statement that checks the value of SQLCODE.

EXEC SQL: Use a WHERE clause in
selected statements

Use this template to flag any EXEC SQL statement containing a SELECT,
DELETE, or UPDATE statement that does not include a WHERE clause. Select
the types of statement to flag: SELECT, DELETE, and UPDATE.

EXEC SQL: Avoid SELECT * Use this rule to flag EXEC SQL statements that contain a SELECT * statement.

EXEC SQL: Use an ORDER BY clause
when declaring a cursor

Use this rule to flag EXEC SQL statements that declare a cursor without
specifying an ORDER BY clause in the contained SELECT statement.

Follow the specified naming
convention for COBOL file names

Use this template to flag program file names that do not match a specified
regular expression. Enter the regular expression as a parameter to this
template. The comparison ignores the file extension of the program name, if
any.

Inline PERFORM statement cannot
exceed the specified line number
limit

Use this template to flag PERFORM statements that contain more than a
specified number of lines. Enter the number of lines as a parameter to this
template.

Procedure division statements cannot
exceed the specified line number
limit

Use this template to flag PROCEDURE divisions that contain more than a
specified number of lines. Enter the number of lines as a parameter to this
template.

Specify 0 RECORDS for BLOCK
CONTAINS clauses in file
description entries

Use this rule to flag BLOCK CONTAINS clauses that do not specify 0
RECORDS.

Use a program name that matches the
source file name

Use this rule to flag any PROGRAM-ID division whose program name is
different than its source file name. The file extension, if any, of the source file
is excluded from the comparison.

Use a scope terminator phrase with
the specified COBOL statement type

Use this template to flag the specified type of COBOL statement if it does not
contain a scope terminator phrase. Select the type of COBOL statement as a
parameter for the template.

Use a WHEN OTHER phrase with an
EVALUATE statement

Use this rule to flag EVALUATE statements that do not include a WHEN
OTHER phrase.

Use an EVALUATE statement rather
than a nested IF statement

Use this rule to flag nested IF statements. Note that if the nesting is more
than one level deep then the rule flags only the outermost nested IF
statement.

Use an exit paragraph in each section Use this rule to flag sections that do not contain an exit paragraph. An exit
paragraph is a paragraph containing only an EXIT statement.

Use an odd number of digits in a
COMP-3 or PACKED-DECIMAL data
definition

Use this rule to flag any data definition that is declared as type COMP-3 or
PACKED-DECIMAL and does not contain an odd number of digits.

@Copyright Royal Cyber, LLC Page 14

Use binary subscripts Use this rule to flag any data item (a) that is used as a subscript to access a table
element, and (b) that is not declared with a usage of COMP, COMPUTATIONAL, or
BINARY.

Use comments to describe all
paragraphs

Use this template to flag paragraph declarations that are not immediately
preceded or followed by a comment. Select whether the comment precedes or
follows the paragraph declaration.

Use comments to describe all sections Use this template to flag section headers that are not immediately preceded or
followed by a comment. Select whether the comment precedes or follows the
section header.

Use CONTINUE rather than NEXT
SENTENCE inside a scoped range

Use this rule to flag NEXT SENTENCE statements that lie within the scope of
any statement that has an explicit scope terminator. For example, a NEXT
SENTENCE statement is flagged if it lies between an IF statement and its
corresponding END-IF phrase.

Use CURRENT-DATE rather than
ACCEPT DATE or ACCEPT TIME

Use this rule to flag ACCEPT DATE and ACCEPT TIME statements.

Use level numbers in the sequence 01,
05, 10, 15, ...

Use this rule to flag data structure definitions containing level numbers (a)
that are not in ascending sequence; or (b) than do not have a value of either 1
or a multiple of 5.

Use SEARCH ALL rather than
SEARCH to search a table

Use this rule to flag table searches that use SEARCH rather than SEARCH
ALL.

Use the specified prefix with
condition names

Use this template to flag data descriptions that do not begin with the specified
prefix. Enter the prefix as a parameter to the template.

Use THRU phrases in PERFORM
statements

Use this rule to flag PERFORM statements that do not include a THRU
phrase.

Table 1 – RDz Version 9.1.2 Out-of-the-Box Code Review Rules

@Copyright Royal Cyber, LLC Page 15

RAA Search Patterns – Finding what you‘re

looking for with Rational Asset Analyzer

This article focuses on the use of IBM’s Rational Asset Analyzer product in doing standard z/OS

Maintenance and Production Support search tasks.

By Ravikanth Chali

Enterprise Search – “Simple yet powerful”

―Simple yet powerful‖ … How many times have you heard that axiom applied to software/technology? Mostly in

the form of marketing-spin, on some new yet (seemingly) wholly un-field-tested applied science that is in search of

some euphemism for; “This will easy after you’ve spent 6 months using it.” I mean… stuff can be simple, and stuff

can be powerful. But simple stuff generally isn‘t powerful. And powerful stuff generally isn‘t simple. I don‘t know

about you, but these tired homilies should go the way of the CASE tools and the 4GLs of the 1980s and 1990s.

(May they rest-in-peace, and we hope that Fran Tarkenton eventually made back his investment in IEF).

However, I‘ve heard various IBM‘rs describe RAA as simple yet powerful – and like the exception that proves the

rule, with RAA they have a point.

Intelligent Searching – using RAA

You might think that using Rational Asset Analyzer to search for something across your inventoried Enterprise assets

is simple. And, it can be simple.

For example, from MVS assets you can go directly to a list of all CICS transactions inventoried (Figure 13). Which

works well enough with a small number of assets but what IF you‘ve inventoried 74,000 transactions? You‘re not

seriously going to page/scroll down through a list that large…….. right?

Figure 13. RAA’s CICS Transaction Summary

http://en.wikipedia.org/wiki/Sterling_Software

@Copyright Royal Cyber, LLC Page 16

Short answer – no… you‘re not. You‘re going to search through the RAA repository using a search pattern (see

Figures 14 and 15).

 Figure 14 shows the same CICS Transaction Summary list filtered with a search term of AC0* - all

transactions starting with AC0.

 Figure 15 shows a Program summary list being searched using the Advanced search functionality.

Advanced search options allow you to logically OR or AND (include/exclude) subsets of the complete

Enterprise inventory in your search results list

Figure 14. RAA’s CICS Transaction Summary – Filtered using Search pattern: AC0*

Figure 15. RAA’s Program Summary – Advanced search with different terms

Figure 15 is searching for all CICS/COBOL programs, inventoried into the HOSPITAL_SAMPLE Application, with

names that start with: ACCT and that use BMS or some other form of terminal I/O.

Figure 16. RAA’s CICS transaction Summary – Advanced search with different terms

@Copyright Royal Cyber, LLC Page 17

Most of the RAA summary pages provide an Advanced search capability (see Figure 16) – if only to subset by the

Site and Application elements.

Searching through the Repository

Using RAA, you are searching for an asset‘s

identifier in the metadata model, not

merely performing a text search. This

method will return fewer ―false positives‖ or

results that match a semblance of your

search criteria but do not help you find

what you are looking for. In fact, they

complicate your work, because you need to inspect and eliminate search ―hits‖.

Because the size, which is measured in the number of artifacts inventoried for your enterprise assets, is so

enormous, the ability to perform pinpoint searching is critical. Rational Asset Analyzer can perform pinpoint

searching, because it has broad, deep, and common requirement-specific searching capabilities:

 Rational Asset Analyzer has a sophisticated but not overly-complex set of search parameters and wildcard

characters.

 Under Advanced Search, there are specific common requirement results and additional search features,

such as looking for variables with a physical or logical length within a range or searching for unused

variables.

The MVS assets model-view searching is the ―simple‖ aspect of RAA. So let‘s now look at Rational Asset Analyzer‘s

search/filtering features using wildcard text patterns.

Enterprise search – filtering results with wildcard text patterns

These examples demonstrate the rules that are used for common name searches. Square brackets ([]) are used to

isolate the actual strings. The brackets are not part of the strings or phrases themselves:

 An asterisk (*) wildcard matches zero or more characters.

o Example: [Z*] matches [Z] or [Z1] or [Z12]

 A question mark (?) wildcard matches exactly one character and ensures that the match is of the same

length. Examples:

o [Z?] matches [Z1] but not [Z].

o [Z??] matches [Z12] but not [Z] or [Z1]

 Single-quotation marks or double-quotation marks are required for strings that have embedded blanks.

 Examples:

o ["A VEHICLE"] matches the phrase [A VEHICLE]

o ["AVEHICLE"] matches the string [AVEHICLE]

@Copyright Royal Cyber, LLC Page 18

Logical OR, Logical NOT and Logical AND

Rational Asset Analyzer supports logical AND, OR, and NOT searches. Multiple terms that are separated by white

space and not enclosed within quotation marks are processed as a logical OR expression, for example:

 [VDUB LEXUS FORD] matches [VDUB] or [LEXUS] or [FORD]

 ["TEST 1" 'TEST 2'] matches [TEST 1] or [TEST 2]

 ["'SOME STRING'"] matches ['SOME STRING']

Figure 17. RAA’s Literal summary page searched with logical OR terms

A minus (-) sign is a logical NOT operator and excludes terms. The logical NOT is handy as a false positive filter, for

example,

 [A* - *C] matches [AB] and [ABCD] but not [ABC]

A plus (+) sign is a logical AND operator. Remaining search tokens that do not begin with + are OR operators, for

example:

 [*A* +*B*] matches [*A*] and [*B*]

 [+*A* +*B*] matches [*A*] and [*B*]

 [*A* *B* +*C*] matches (([*A*] or [*B*]) and [*C*])

 [*A* +*B* *C*] matches (([*A*] or [*C*]) and [*B*])

 [*A* *B* +*C* -*D*] matches (([*A*] or [*B*]) and [*C*] and not [*D*])

Using logical AND search patterns for searching against simple RAA meta-data objects such as program or

transaction names, batch job names, tables, files, etc. is not going to net you much. Use logical AND patterns

against complex meta-data such as literal strings.

Figure 18. RAA’s Literal summary page searched with logical AND terms

Note that, from Figure 18 – it wouldn‘t matter if you coded the DB2 or the ERROR search text first.

@Copyright Royal Cyber, LLC Page 19

Search patterns that include the escape character

The backslash character (\) is an escape character for the asterisk (*), question mark (?), plus sign (+), minus sign (-

), single quotation mark ('), double quotation marks ("), and backslash (\), for example:

 [***] matches any string with the literal * in it

 [+A* +*\+*] matches all strings that start with A and that contain +

Advanced search patterns: Numeric range searching

For advanced search value fields that are numeric, such as literals, or variable searches - for fields with separate

physical or logical lengths, you can enter multiple values and ranges separated by blanks, for example:

 [10 20] matches 10 or 20

 [<3 >10] matches less than 3 or greater than 10

 [<=3 >11] matches (less than or equal to 3) or greater than 11

 [<3 >=11] matches less than 3 or (greater than or equal to 11)

 [1-4 45] matches (between 1 and 4) or 45

Figure 18. RAA’s Literal summary page, searched with numeric values

Note from Figure 18 that searching on negative numbers requires enclosing terms in single quotes.

Summary

Often the process of analysis begins by identifying the variation in the names that are used to refer to the

component that needs to change. This situation is especially true of data elements. Because naming standards

are not always followed, you must discover what variations have been used. For example, part number might be

written as PARTNO, PART-ID, PART-NO, PART-NUM, PTNBR, PT-NO, and so on.

A simple text scanning tool, even when combined with a general-purpose editor, such as ISPF, requires multiple

searches, one search for each variation. Why? Because if you use partial names, such as ‗PART‘, a simple text

scan will also return matches to strings, such as PARTNER and PARTIAL. These unwanted matches, which are known

as false positives need to be assessed and eliminated, which is typically a manual operation. With the size and

scope of production systems where the number of variables can easily reach tens of millions, this elimination is an

onerous prospect.

@Copyright Royal Cyber, LLC Page 20

Our view…

RAA‘s Repository can house the meta-data for your all of your Enterprise applications. It can also house a subset

of your code. Either way intelligent searches against your codebase – where you‘ve localized the results you‘re

looking for will save both time & money. This article focused on different search pattern terms and wildcard

characters. Future articles will continue to drive through aspects of this tool that can lighten your workload and

simplify your daily tasks.

Next steps…

Where can you learn more about RAA…either from us or from IBM. IBM has also published a few RAA Redbooks

with RAA content—such as: http://www.redbooks.ibm.com/abstracts/SG247868.html?Open

At Royal Cyber we also do RAA demonstrations - for those of you who might want to see RAA running vs. a few

static screen captures (and really… there‘s no comparison, static captures/Redbooks do not do RAA justice)

We also consult on RAA. We bring a 3rd Party objectivity to your projects and our work on them. And we have

the practical/production expertise to help you manage true production projects. Finally, we offer high-quality

RAA training that was built from our customer and personal experience with RAA.

Contact us about our RAA service offerings Feel free to request an online/remote demo.

Ravikanth Chali is a senior technical consultant with Royal Cyber. He has ten years of experience in

Mainframe application/ tools development including Eclipse and RDz plugin-ins. Ravi is very well versed in the

usage and best practices related to RDz and RAA. He has world-class and unique specialist skills writing Eclipse

plug-ins to RDz.

http://www.redbooks.ibm.com/abstracts/SG247868.html?Open
http://royalcyber.com/contact-information/

@Copyright Royal Cyber, LLC Page 21

Royal Cyber in the News

In February & March we delivered our first two IBM RDz Distance Learning classes – to over 230 new RDz users

world-wide. As a first-time transition from IBM, which had been running Distance Learning for six years there were

some hiccups with the logistics, but he results were as you can see below. By the time this Newsletter goes to print

there will (likely) not be availability left in the April Distance Learning session, but you can sign up for May (through

the end of 2014) sessions here: http://royalcyber.com/royal-cyber-rdz-distance-learning-training-schedule/

Rational EM News

 For details on the Royal Cyber RDz Rollout and project/task usage modeling contact us:

inquires@royalcyber.com

 Details on RDz technical services:

http://www.royalcyber.com/wp-content/uploads/2014/You-

RDz-and-Royal-Cyber-v4.pdf

http://royalcyber.com/royal-cyber-rdz-distance-learning-training-schedule/
mailto:inquires@royalcyber.com
http://www.royalcyber.com/wp-content/uploads/2014/You-RDz-and-Royal-Cyber-v4.pdf
http://www.royalcyber.com/wp-content/uploads/2014/You-RDz-and-Royal-Cyber-v4.pdf

@Copyright Royal Cyber, LLC Page 22

A few of our catalog offerings…

N

